The Non-Convergence of Steiner Symmetrizations

نویسندگان

چکیده

In this paper, we demonstrate the existence of iterated Steiner symmetrizations [see formula in PDF] that does not converge, even if sequence directions is dense unit sphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Steiner diameter of a graph

‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $...

متن کامل

Quantized Symmetrizations and ⋆-products

The purpose of this article is to make precise some of the results we have reported in talks in Bedlevo (Sep. 2000) and Krakow (July 2001). We have pointed out there that for any algebra having a PBW-type basis, it is possible to construct a ⋆-product. At the conference this has also been made pertinent by J. Wess in his talk and R. Twarock also uses Bergman’s Diamond Lemma . On the other hand,...

متن کامل

Random symmetrizations of measurable sets

In this paper we prove almost sure convergence to the ball, in the Nikodym metric, of sequences of random Steiner symmetrizations of bounded Caccioppoli and bounded measurable sets, paralleling a result due to Mani-Levitska concerning convex bodies. AMS classification: 60D05, 52A40, 28A05

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Wuhan University Journal of Natural Sciences

سال: 2023

ISSN: ['1007-1202', '1993-4998']

DOI: https://doi.org/10.1051/wujns/2023283217